

Sustainable Development of Ready-Mixed Concrete in Hong Kong

Mr. Casey CHAN Mr. Kenneth MAK Ir. Billy CHEEMA Mr. KM CHAN

Presentation Outline

- Introduction to Sustainable Development of Ready-Mixed Concrete (present by Mr. Casey Chan)
- Sustainable Concrete Mix Design (present by Mr. Kenneth Mak)
- 3. Plant Operation and Production of Concrete (present by Ir. Billy Cheema)
- 4. QC/QA and Conclusion

(present by Mr. K.M. Chan)



Part I Introduction to Sustainable Development of Ready-Mixed Concrete

Why is concrete sustainability important?

- Commonly and widely used materials
- About 4-5 times higher than the world's average (per person)
- Concrete's versatility → Sustain our city's development
- Non-sustainable → expensive cost and difficult to maintain production

"Our common future", World Commission on Environment and Development (WCED), 1987.

Sustainable development in ready-mixed concrete:

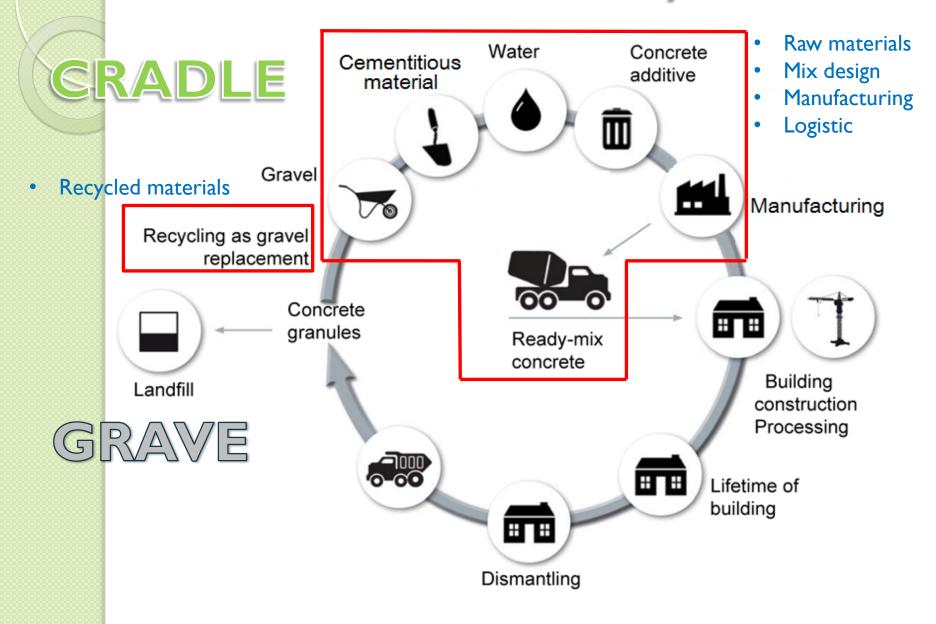
- *I)* Durability concern without exorbitant strength requirement
- 2) Reduction in embodied CO_2 (overall CO_2 emission into the atmosphere during the entire cycle of producing a product)
- 3) Conservation of raw materials
- 4) Use of recycled or supplementary materials
- 5) Avoidance of disposal of concrete
- 6) Etc...

Who should participate in sustainable development?

- Project owners
- Designer/Specifiers
- Contractors
- Concrete producers or other

associated parties, etc...

All of uss???


IN FLOOR

Concrete Life Cycle

THE CONCRETE

PRODUCERS

Association of hong kong LTD.

Concrete Sustainability

- Limited raw materials for cement and concrete production
 - Limestone, iron ore, gypsum, etc. (for cement)
 - Natural aggregates, admixture chemicals, etc. (for concrete)
- Conservation of natural resources (Explore other sustainable or recycled materials)

- Recycled materials
- Supplementary cementitious materials
- Carbon emission concern
 - \succ Cement \rightarrow Primary ingredient in concrete
 - ➤ Cement industry → Major CO₂ producer, energy consumer
 - I ton cement → About I ton of CO₂ generate
 - \succ Use of cement \downarrow \rightarrow Emission of greenhouse gases \downarrow
 - Avoid unnecessarily high strength requirements
 - Adopt cement substitutes

Concrete Sustainability

- Landfill problem
 - Limited space for landfill in Hong Kong
 - \succ Recycling \rightarrow Alleviate the stress in landfill sites

Some sustainable/recycled materials for concrete production

Cement substitutes:

Pulverized fuel ash

Concrete fillers:

Ground granulated blastfurnace slag

Condensed silica fume

Recycled aggregates

Recycled glass

Manufactured sand(Processed)

Pulverized Fuel Ash (PFA)

- A by-product from coal burning power plant
- Captured by electrostatic precipitators
- Two local suppliers (CLP & HKE)
- Coal-firing $\downarrow \rightarrow$ Local PFA supply \downarrow
- Mainly import from mainland

HKE – Lamma Power Station

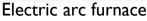
CLP – Castle Peak Power Station

Ground Granulated Blast-furnace Slag (GGBS)

- An industrial waste from iron or steel mill
- By water quenching molten iron slag from a blast furnace
- Mainly from mainland or other overseas countries
- CoP 2013 \rightarrow GGBS
- HA spec. \rightarrow Use in precast concrete façade

Blast furnace

Iron/Steel mill


Precast concrete facade

Condensed Silica Fume (CSF)

- A by-product from silicon production industry
- From the carbothermic reduction of high-purity quartz in electric arc furnace
- Supply from mainland or other foreign countries
- Use in high performance or high strength concrete

Silica fume particles

Silicon production plant

3.5 Million

Recycled Aggregates (RA)

- Retrieved from construction and demolition (C&D) waste
 - Building demolition (Crushing old concrete)

 About 14 Million tons of C&D waste is generated each year in HK
 Soft Materials, 60%

• Challenges:

Hard and Inert Materials, 25%

Hesitation of engineers (quality concern)

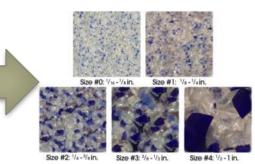
Debris, 15%

- Lack of Gov. support
- Lack of demand & supply
- ➢ Etc…

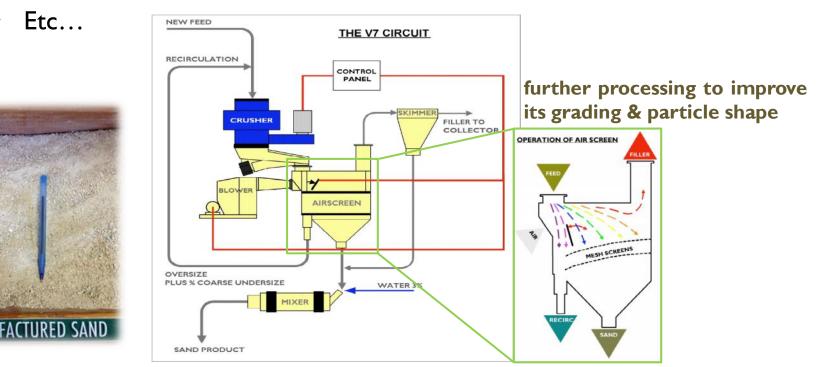
Recycled Glass

- Collected from glass recycling industry
- Use as coarse or fine aggregates
- Very small quantity (5% <) is processed and used
- Use in ready-mixed concrete?
- Challenges:
 - High cost in collection, transportation and production
 - Lack of Gov. support
 - Lack of local glass recycling and processing practitioners
 - Unprevailing recycling culture
 - ➢ Etc...

Glass recycling bin


Recycled glass

Glass crushing machine



- Further processing of crushed rock fines
- Can be applied in both concrete and mortar production
- Dependency of river sand \downarrow
- Challenges:
 - Limited source of supply
 - Deep-rooted custom in using river sand

Part 2 Concrete Mix Design Considerations

D

D

reduce

recycle

reuse

Reduce Reduce

Reduce Carbon Dioxide (CO₂)and Green House Gases (GHG) emission

Select constituent materials with lower embodied CO₂e

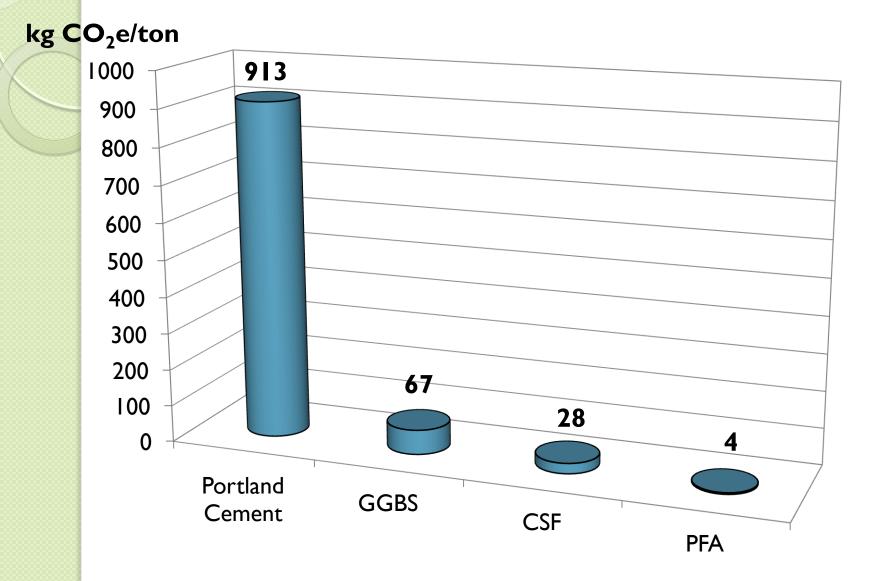
Consider constituent materials from a nearer source

Constituent materials with lower embodied CO₂e

PFACSFGGBS

Recycle

aeduc.



Reuse of concrete

Fresh Concrete

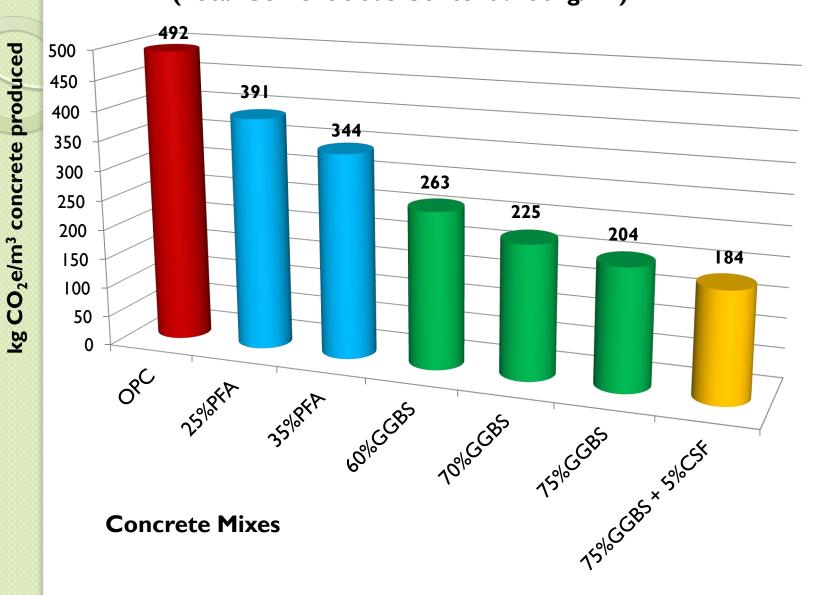
Hardened Concrete

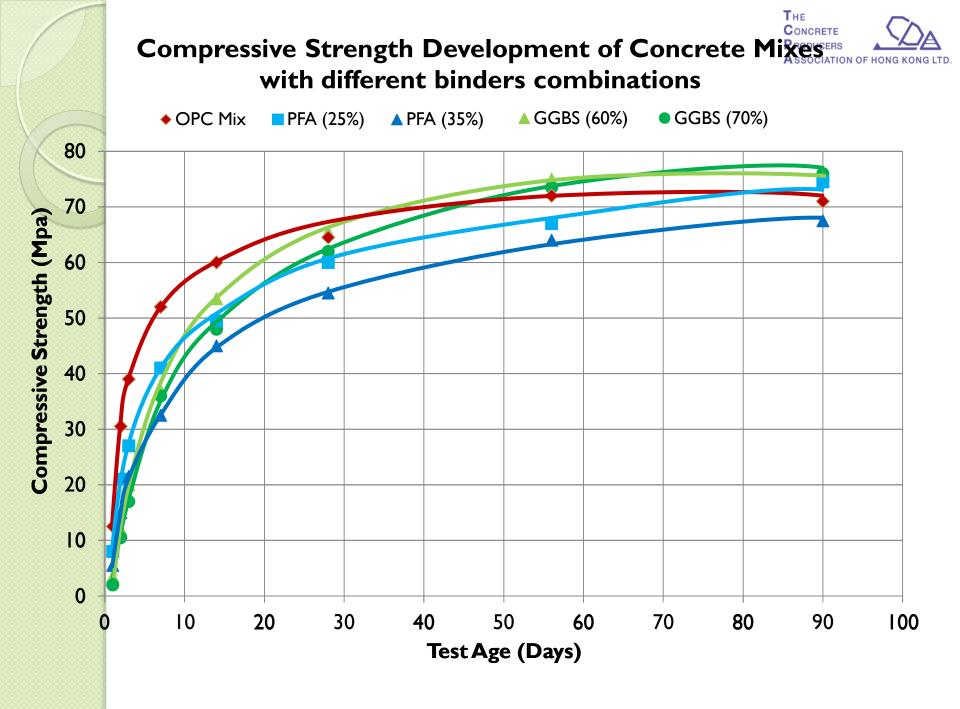
Embodied CO2e of Cement and SCMs PRODUCERS ASSOCIATION OF HONG KONG LTC

Mineral Products Association (UK) – Fact Sheet 18

Evaluate embodied CO₂e of Concrete Mixes

- Different combinations of SCMs are selected
- Total cementitious content : 450kg/m³
- Same free water / binder ratio and aggregate / binder ratio
- Same sources of cement and aggregates are assumed
- Same brand and type of admixtures, dosage varies slightly to achieve desired slump

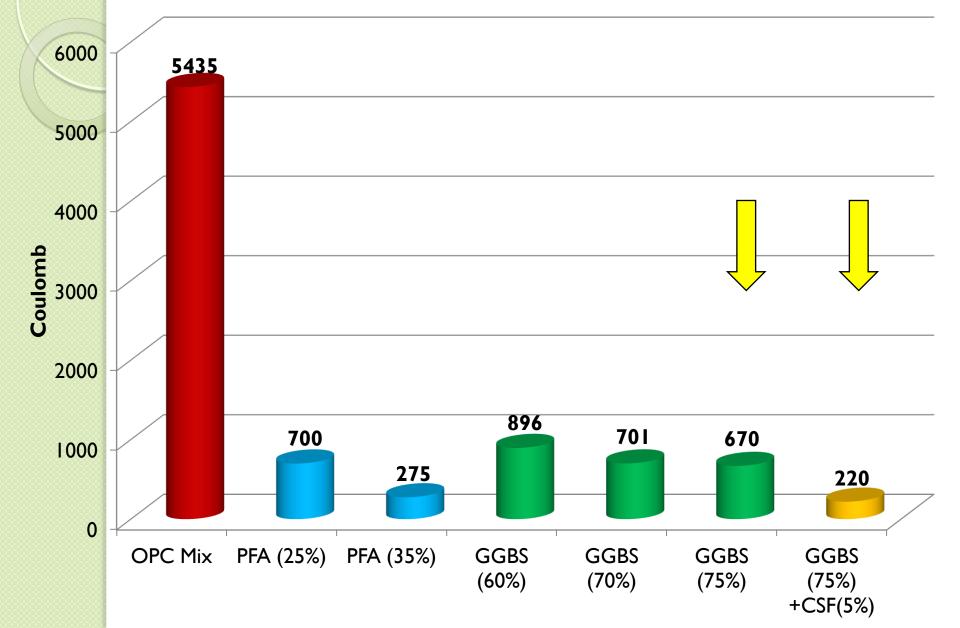



Evaluate embodied CO₂e of Concrete Mixes

List of Concrete Mixes

Concrete Mixes	ОРС	PFA	GGBS	CSF	20mm	10mm	CRF	Water
100% OPC	450				590	280	820	171
PFA (25%)	340	110			590	280	820	171
PFA (35%)	290	160			590	280	820	171
GGBS (60%)	180		270		590	280	820	171
GGBS (70%)	135		315		590	280	820	171
GGBS (75%)	110		340		620	300	770	171
GGBS (75%) +CSF(5%)	90		337	23	620	300	770	171

CO₂e of Concrete Mixes with different combination of Cementitious Materials (Total Cementitious Content : 450kg/m³)



Chloride Permeability at 35 Days (in accordance to ASSHTO T277-93)

Added Values of considering SCM in concrete design mix

- Further strength development at later ages
- Lower heat of hydration
- Improvement in durability
- Control measure for Alkali-silica reaction
- Lower cementitious content for lower CO₂e emission

Other considerations of using Sociation of Hong Kong LTE SCM in concrete

- Construction cycling time
 - formwork striking time
 - strength development of binder combination
 - design methodology
 - ambient temperature
- Cost effectiveness
- Supply of materials

Reuse of concrete Fresh Concrete

Aggregates can be retrieved by Concrete Reclaimer or Filter-Press

Reuse of concrete Hardened Concrete Crushed and sized to become Recycled Aggregates

<u>Concrete Mix Design with Recycled</u> <u>Aggregates (RA)</u>

Comply with RA Specifications

Mandatory Requirements	Limits	Testing Method	ETE CERS IATION OF HONG KONG LTD.
Minimum dry particle density (kg/m³)	2000	BS 812: Part 2	
Maximum water absorption	10%	BS 812: Part 2	
Maximum content of wood and other materials less dense than water	0.5%	Manual sorting in accordance with: BRE Digest 433	
Maximum content of other foreign materials (e.g. metals, plastics, clay lumps, asphalt and tar, glass etc)	1%		
Maximum content of fines	4%	BS 812: Section 103.1	
Maximum content of sand (<4mm) (% m/m)	5%	BS 812: Section 103.1	
Maximum content of sulphate (% m/m)	1%	BS 812: Part 118	
Flakiness index	40 %	BS 812: Section 105.1	-
10% fines test	100 KN	BS 812: Part 111	•
Grading	Table 3 of BS 882:1992		-
Maximum chloride content	Table 7 of BS 882 – 0.05% by mass of acid soluble chloride ion of combined aggregates		

Concrete Mix Design with Recycled

Aggregates (RA)

- Comply with RA Specifications
- Allow to use 100% RA for concrete up to Grade 20
- Allow max. replacement of 20% RA for concrete up to Grade 25 to 35
- RA must be crushed old concrete, fines retrieved shall not be allowed

Manufactured Sand (M-Sand)

- Cubical in shape that resembles the shape of river sand
- Well graded to the required proportion
- Gives a higher packing density which enhance the durability of the concrete
- Does not contain organic and other compound that may affect the setting time and cement hydration
- Minimize impurities such as clay, dust, and silt coatings
- Use lower binder materials to enhance lower
 CO₂e emission

Conclusion

- Supplementary Cementitious Materials can greatly reduce the CO₂e and gives other added values to concrete products
- Recycled Aggregates can relief landfill pressure and conserve natural aggregates reserves
- Manufactured Sand can reduce the overall binder content required when compared with crushed rock fines

Part 3 Plant Operation and Production of Concrete

Challenges arising from use of new constituent materials (Concrete Batching Plant Operation in Hong Kong)

Concrete Batching Plant Operations Association of HONG KONG LT

ACT:

Improvement plans, staff retraining, etc. Plant design, selection of materials, suppliers and equipment, staff training,

etc.

PLAN:

CHECK:

Calibration, Product QC, Internal and External audits,

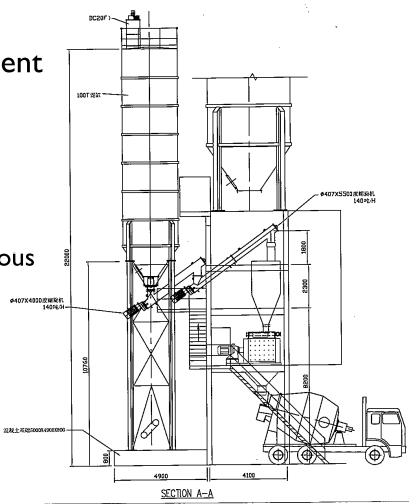
etc.

Control of Material receiving, production process, equipment maintenance, inprocess inspection, delivery etc.

DO:

Тне

PFA / GGBS / CSF Cementitious Materials


Stored in Silo

PFA / GGBS / CSF

- Typical Concrete Plants erected in the past and are still in operations
- One or Two Silos for Cement
- One Silo for PFA
- One Silo for Silica Fume
- Where can the other cementitious
- materials including GGBS go?
 Shift Silo
 - Erect New Silo

Manufactured Sand / Recycled Aggregates

- Stored
 - Stockpiles
 - Overhead Storage Bin

PFA / GGBS / CSF

- Challenges for Erecting Additional Silo
 - ➢Space availability
 - Building Department Approval
 - Environmental Protection Department Approval
 - Lands Department Approval (Depends)

Manufactured Sand / Recycled

Aggregates

- Challenges for Erecting Additional Stockpile
 - >Occupies large area of land space
 - Load moving machinery
 - Lands Department approval
 - Environmental Protection Department approval
 - Building Department approval

Manufactured Sand / Recycled

Aggregates

- Challenges for Erecting Additional Storage Bin
 - ≻Large area
 - Conveyor System
 - Building Department
 - Lands Department
 - Environmental Protection Department

Building Department Approval

>PNAP 255 (APP-120)

- >Foundation, Structural, Stability Calculation
- Building Services, Fire Hazard
- Submission / Approval / Consent
- Design to as-build Checking

Environmental Protection Department Approval (Specified Processes)

>Air Impact Modelling

- >Air Pollution Control Plan
- Submission / Approval
- Newspaper Notification
- Draft License

Environmental Protection Department Approval (Specified Processes)

- Air Impact Modelling
 - Calculate impact of haul road travelling by cement tanker and emission by dust collector.
- Dust Collector emission

> Dust suppression efficiency > 99.9%.

Lands Department Approval

Covered Area

Coordination among other government departments for their concerns

atching Plants

Are the Concrete Batching Plants ready?

- Is Government procedures the problem?
- Or the approval system?
- Is Concrete Production a niche market in Hong Kong or it is robust?

<u>Part 4</u> Use of SCM in Hong Kong QA/QC of using sustainable materials

Use of Supplementary Cementitious Materials in Local Specifications

Max % of cementitious materials by mass	HKHA Spec Library 2012 CONI	CEDD GS:2006 Section 16	COP of Structural Use of Concrete 2013
PFA	35% for foundation 25% for others	25-35% for ordinary concrete	25-35% for ordinary concrete
GGBS	Only allow 35% for precast concrete façade	35-75% for ordinary concrete	35-75% for ordinary concrete
	Combination of PFA 8	GGBS is Prohibited	

•Use of SCM is not mandatory

•High early strength of concrete is required for fast track construction.

Use of Supplementary Cementitious Materials in Local Specifications

- Limited by the local regulation, concrete strength must be measured at 28 days after concreting.
- Concrete with PFA and/or GGBS will have 10-20% strength growth after 28 days.
- Studies is carrying out to fully utilize the ultimate strength of PFA/GGBS concrete in design and construction.
- Incorporation of PFA and GGBS in concern as adopted in other localities should be further studied.

Quality Control & Assurance

- QA/QC shall comply with <u>Quality</u> <u>Scheme for the Production and Supply of</u> <u>Concrete</u> (QSPSC)
- QSPSC covers Quality Management System, Concrete Mix Design, Maintenance of Equipment, Materials Control, Production Control, Product Quality Control

Physical test	PFA	GGBS			
PFA & GGBS	Once per week or	Once per week or			
Fineness	1000m3 production	1000m3 production			
Density					
Water Requirement	Testing Method	Testing Method			
Setting Time	BS EN 196	BS EN 196			
Moisture Content					
	Compliance Standard	Compliance Standard			
PFA	BS3892	BS EN 15167-1			
Soundness					
Strength Factor					
GGBS					
Compressive Strength (Prism)					
Other tests required in project specification					

Setting Time test apparatus

Chemical test	PFA	GGBS
PFA & GGBS	Once per year	Once per year
Loss of Ignition	T M I	T M I
CaO, SO ₃ , Cl, Na ₂ O and $K = C_{1}$	Testing Method	Testing Method
K ₂ O Content, Total Alkali Content	BS EN 196	BS EN 196
Content	Compliance Standard	Compliance Standard
GGBS	BS3892	BS EN 15167-1
$\overline{S, MgO, Al_2O_3, Mn_2O_3}$		
Impure Silica, Pure Silica		
Content		
	• • • • • •	

Other tests required in project specification

Furnace for LOI

Requirement

Performance certificate from CSF supplier

Every 100T delivery or 3000m3 production

Date tested: 09-Jan-2015

Date tested: 13-Jan-2015

Date tested: 18-Jan-2015

Date tested: 12-Jan-2015

Date tested : 09-Feb-2015

Other tests required in project specification

PRODUCT ANALYSES

Product: Grade:

Sampling Date:	24th Nov,2014
LOT ID:4814	

Sample description: Silica Fume (Source: Sample Location : -Client sample ID : -Date sampling of materials: 30-Dec-2014 Test Method: CAN/CSA-A23.5-M86

Test Results Date Received: 30-Dec-2014 Sample Mass as Received: 15 kg

Lab Sample ID: CE141807

Fineness 0.8%

CSF

Density 2.25 g/cm3

3. Soundness 0 mm

4. Flow Test Control mix Flow Value: 85.5 % Test mix

Flow Value: 89.0 %

5. Pozzolanic Activity Index With Portland Cement 7 days Pozzolanic Activity Index: 128 %

-				
Compressive Stre (Age at test : 7 da Control Mix)		
© 29.10	② 29.40	3 29.95	Mean = 29.5	Date tested : 19-Jan-2015

Test Mix 0 38.20 @ 36.85 38.45 Mean = 37.8 Date tested : 19-Jan-2015

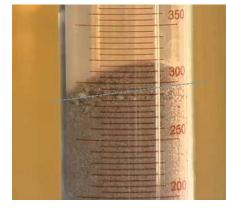
Increase of drying shrinkage

Increase of drying shrinkage of mortar bar at 28 d = 0.00 %

Average drying shrinkage of the control specimens = 0.017 % Average drying shrinkage of the test specimens = 0.021 %

PARAMETER: UNITS SPEC ANALYSES Silicon dioxide (SiO₂) min % 85.0 92.5 Loss On Ignition max % 4.0 0.8Chloride (Cl') max % 0.20 0.01 Sulfate (SO3) 2.0 max % 0.6 Alkalies (Na2Oeqv) max % 4.01.4 Free silicon (Free Si) max % 0.40.1Free calcium oxide (Free CaO) max % 1.0 ≤ 1.0 Specific Surface m^2/g $\geq 15.0 \leq 35.0$ 21.4Pozz. Activity Index min % 100 129

These are the latest available test results corresponding to the material with the reference number above.


M. Sand (fine aggregate)	Testing Method & Compliance Standard CS3:2013 Aggregate for Concrete	
Grading	I sample / day / source	
Fines Content	I sample / day / source	
Relative Density	2 samples / year / source	
Water absorption	2 samples / year / source	The states
Moisture content	2 samples / day / source	
Alkaline Reactivity of Aggregate	Accelerated Mortar Bar Test (AMBT) at least I sample /4 month / source	
		Signing Tost

Sieving Test

Other tests required in project specification

Oven dry for water absorption / Moisture content

Silt Content (by Volume)

AMBT

CS3 has introduced a new compliance criterion for fines content of aggregate

CS3:2013 Table 3.3 Limits for Fines Content

		Max % by mass passing 75µm	Methylene Blue Value (MBV)
Fine aggregate	Class I	10	-
	Class II	> 0 & ≤ 4	≤1.4

Halo

$$MBV = \frac{V_1}{M_1} \times 10$$

where

- M_1 is the mass of the test portion (in g);
- V_1 is the total volume of dye solution added (in mL); and
- 10 is the density factor for converting the volume of the dye solution used to the mass of dye adsorbed per kilogram of the fine aggregate tested.

Recycled coarse aggregate	Testing Method & Compliance Standard CS3:2013 Aggregate for Concrete	
Tests same as M. Sa	nd	
Grading	I sample / day / source (% passing 4mm sieve shall not exceed 5%)	
10% fines	I sample / month / source	
Elongation & Flakiness	2 samples / year / source	Flakiness & Elongation apparatus

Tests required in CS3 Foreign Materials Content, Presence of Organic Substances, Acid Soluble Chloride Ion / Sulphate Content

Other tests required in project specification

C & D Waste

10% fines test

Production Control -QSPSC basic

requirements

Process	Requirement	
Batching	Production by computerized system	L.
Weighting	±5% for Chemical Admixture ±2% for Cement, PFA, GGBS, Aggregate, Water 0% to +5% for CSF	
Calibration of Scale	BS5781 at least once every 3 months	C
Mixer	Table 1 of Appendix C of QSPSC	
MixingTime	Not less than recommendation from mixer manufacturer or the mixing time verified by the uniformity test described in QSPSC	
Transportation	Delivered in an agitator	Com

Computerized Batching System

	至總量 比次量 3.90	*** ELEM	1 210.1	*##	7.7 43	
304.5	17.2. 19552	0284 403452	12208-2		-	-
物料名稱	10715768	百姓道	267518	EF (Held TA)	1. 1. 11. 11. 15	11400
CEMENT	1318.00	1299.00	-19.00	-1.44	8045	
PEA	710.00	719.00	9.00		anti anti	8-000 (0181)
20MM	2881.00	2634 00	-\$7.00			- 440 102/017
TOWM	1223.00	1178.00	45.00	100 00	No.	
(SMM(S/F)	2263-00	0.00	2 00	0.00	RIFE	
WATER	303.00		0.40	700	8045	a set at a
Mira 220W	19.50 272.00	10000	0.00	0.00	野	

Weighting of Materials

Product Control-QSPSC basic requirements

Test	Frequency	
Cube Compressive Strength	 I pair (1st 25 to 150m3 production), I additional pair per 150m³ with max 4 pairs. Control concrete strength based on early age (≤7 days) cube test 	
Workability Test	Testing rate same as cube test	1201
Total Alkaline Content of Concrete	Equivalent Na ₂ O content (<3kg/m3) of concrete mixes will be checked during regular audit	Cube Compression Test

Other tests required in project specification

Flow Table Test Apparatus

Making Test Cube

Concluding Remarks

Use of sustainable materials (e.g. PFA, GGBS, CSF, M. sand, recycled aggregate.) is welcome by Concrete Producers.

> Advantages:

(i) Reduce carbon emission ; (ii) Reduce solid waste; (iii) Enhance durability; (iv) Enhance performance of concrete

> Overcoming Challenges:

(i) government policy ; (ii) local researches; (iii) review of regulation & specifications; (iv) education & training in construction industry.

• Quality Control of sustainable materials is already included in QSPSC.

Concluding Remarks

 Apart from sustainable use of raw materials, use of sustainable concrete by Architects and Engineers are also essential.

~Thank You~

0