Feasibility study of carbon dioxide capture on functionalized graphane sheets

Yanjun Xiao, Zhigang Deng and C. M. Lawrence Wu Department of Physics and Materials Science City University of Hong Kong Hong Kong, P. R. China

Contents

- Greenhouse effects and CO₂ capture
- Computational methodology
- CO₂ adsorption over

P-Doped/Directly Grafted PH_2 -Graphanes P-Doped/Directly Grafted PH_2 -Graphanes in the Presence of H_2O Grafted $-NH_2$, -OH and -COOH Graphanes

• Conclusions

Introduction- The Greenhouse Effect

http://1.bp.blogspot.com/-GRAGL2k4L8o/Ti6-C2J6SQI/AAAAAAAAAAAPU/JTOjRqHrzG8/s1600/Greenhouse_Effect.png

Elevation of temperature

Introduction- The Greenhouse Effect

HITRAN on the Web. Gas mixture: Atmosphere of Earth. Stick spectrum at T=239.79834301K.

http://upload.wikimedia.org/wikipedia/commons/a/ad/Synthetic_atmosphere_absorption_spectrum_ 2.gif

Introduction- The Ocean Acidification

OCEAN ACIDIFICATION

http://www.oceanacidification.org.uk/Oarp/media/images/oa_800.jpg

pH: 8.2 to 7.8

Introduction- Carbon capture and storage (CCS)

http://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Carbon_sequestration-2009-10-07.svg/2000px-Carbon_sequestration-2009-10-07.svg.png

At stationary point source

Introduction- adsorbent materials for CO_2

Graphene/graphite http://upload.wikimedia.org/wikipedia/commons/9/9e/Gra http://blogs.rsc.org/ce/files/2012/01/GACA0BKYKI-JPEG1.jpg phen.jpg

Carbon nanotubes (CNTs)

http://www.foodengineeringmag.com/ext/resourc es/TECH_FLASH/TF-8-10-Carbon-Nanotube.gif

Porous organic polymers (POPs)

Covalent organic frameworks (COFs)

http://www.pmatlab.com/ /rsrc/1378661496871/Resear ch-interest/wp3.jpg?height=384&width=400

Metal organic frameworks (MOFs)

http://www.chem-station.com/en/wpcontent/uploads/2014/04/8334cov1aamolec ule.gif

Zeolites http://upload.wikimedia.org/wikipedia/commons/5/58/Z eolite-ZSM-5-3D-vdW.png

Introduction- Graphane

香港城市大學 City University of Hong Kong

Graphene

2-D polymer of C and H with unit formula $(CH)_n$

That is, hydrogenated graphene

Introduction- Graphane

Introduction- Modeling and Simulation (M&S)

M&Sisgettinginformationwithoutactuallytestingitreal life.

• M&S is using abstract models to simulate the system.

https://upload.wikimedia.org/wikipedia/commons/8/8b/Typhoon_Mawar_2005_computer_simu lation_thumbnail.gif

Introduction- Modeling and Simulation (M&S)

- Cheaper and safer;
- More convenient;
- Faster;
- A coherent synthetic environment.

Computer simulation of the process of osmosis

 $https://upload.wikimedia.org/wikipedia/commons/4/45/Osmosis_computer_simulation.jpg$

Introduction-Adsorption

Computational details

- <u>Material Studio</u>, DMol³ program package (based on <u>DFT</u>);
- Generalized gradient approximation (GGA), Perdew–Wang (PW91);
- A 3 \times 3 \times 1 Monkhorst–Pack (MP) k-point mesh was used for all of the surfaces;
- <u>A vacuum layer of 15 Å</u> was added perpendicular to the single layer surface.
- All calculations were spin-polarized.

	DMol3 Calculation							
	Setup Electronic Properties Job Control							
	Task: Geometry Optimization More							
	Quality: Customized							
	Functional: GGA PW91							
	Use OBS vertication method for DFT-D correction							
<	Spin unrestricted 🔽 Use formal spin as initial							
	Metal Multiplicity: Auto							
	✔ Use symmetry Charge: 0 ▲							
Run 👻 Files Help								

DMol3 Calculation									
Setup Electronic Properties Job Control									
Integration accuracy:	Fine 💌								
SCF tolerance:	Ene								
k-point set:	Customized 💌 3x3x1								
Core treatment:	All Electron								
Basis set:	DNP 💌 Basis file: 3.5 💌								
Orbital cutoff quality:	Fine 💌								
Harris approximation	Harris approximation								
Use solvation model									
Run	▼ Files Help								

香港城市大學 City University of Hong Kong

Computational details

• The unit cell of graphane was optimized as a = b = 2.46 Å, modeled as a 4 \times 4 supercell of graphane (32 C atoms plus 32 H atoms).

CO₂ Adsorption over P-Substituted Graphanes

Graphane+CO₂

 $E_a = -3.313$ kJ/mol •The adsorption energy results suggest that higher P concentration gives more exothermic CO₂ adsorption.

•All CO_2 adsorption over Psubstituted graphane is weak independent of P-doping concentration.

$GAP+CO_2$

 $E_a = -4.895$ kJ/mol

GA2P-para+CO₂

 $E_a = -8.573 \text{kJ/mol}$

GA2P-meta+CO₂

 $E_a = -4.763$ kJ/mol

CO₂ Adsorption over P-Substituted Graphanes

GA2P-meta+CO₂

GA2P-para+CO₂

GA2P-ortho+CO₂

 $E_a = -4.763$ kJ/mol

- E_a : ortho > para > meta.
- Higher P doping, more van der Waals (vdW)

CO₂ Adsorption over Directly Grafted PH₂-Graphanes

$GAPH_2 + CO_2$ (Physical)

$E_a = -6.762$ kJ/mol

 $GA(2PH_2 + CO_2 (Physical))$

 $E_a = +42.997$ kJ/mol

 $GA2PH_2 + CO_2$ (Chemical)

- Adsorption of CO_2 over PH_2 grafted graphane is relatively weak.
- PH_2 reaction with CO_2 is not favorable.
- Higher density of PH₂- sites does not enhance the CO₂ adsorption energy.

CO₂ Adsorption over P-Substituted/Directly Grafted PH₂-Graphanes in the presence of water

GAPH₂+CO₂+H₂O (physical)

$GAP+CO_2+H_2O$ (physical)

The presence of H_2O strongly enhances CO_2 adsorption over both P-substituted and PH_2 -grafted graphanes.

Analysis-electron density

The electron density for GAP+CO₂+H₂O

The electron density for GAPH₂+CO₂+H₂O

No electron cloud was found overlapping among the CO_2 , H_2O molecules and the GAP or $GAPH_2$ sheet in both adsorption system, indicating that the two adsorption systems were physical.

Analysis-Partial density of state (PDOS)

PDOS of **P** in GAP+ CO_2 + H_2O

PDOS of CO₂ in GAP+CO₂+H₂O

Fig. a: no obvious change around the Fermi level; the p orbital has slight change.

Fig. b: significant PDOS difference for CO₂; caused by electron transferring.

Analysis-Partial density of state (PDOS)

PDOS of PH_2 in $GAPH_2+CO_2+H_2O$

PDOS of CO_2 in GAPH₂+CO₂+H₂O

Fig. c: mild shift of both s and p orbitals.

Fig. d: great PDOS difference of CO_2 ; also caused by electron transferring.

CO₂ Adsorption over -NH₂, -OH and -COOH Grafted Graphanes

Analysis-Partial density of state (PDOS)

The PDOS of both $-(OH)_2$ and CO_2 have significant changes. The large amount of electron transferring is suspected to cause the sizable change.

Overview

	E _a (kJ/mol)	h_{C-H} (Å)	h_{C-P} (Å)	h_{O-P} (Å)	h_{O-H} (Å)	h _{C-O/N/C} (Å)
GA+CO ₂	-3.313	2.981				
GAP+CO ₂	-4.895	3.873	5.328			
GA2P-meta+CO ₂	-4.763	3.122	5.110			
GA2P-para+CO ₂	-8.573	3.271	4.247			
GA2P-ortho+CO ₂	-9.861	3.109	3.518			
GAPH ₂ +CO ₂ (physi)	-6.762	3.786	3.464			
GAPH ₂ +CO ₂ (chemi)	+42.997					
GA(PH ₂) ₂ +CO ₂ (physi)	-6.504	3.551	3.579			
GA(PH ₂) ₂ +CO ₂ (chemi)	+50.300					
GAP+CO ₂ +H ₂ O	-31.787	3.618 ^{a,} 2.882 ^b	5.557	5.459	3.315	
GAPH ₂ +CO ₂ +H ₂ O	-41.794	3.581 ^a , 3.953 ^b	3.838	3.473	2.886	
GAOH+CO ₂	-9.678	2.869				2.906
$GA(OH)_2 + CO_2$	-44.889	2.817				3.141
GANH ₂ +CO ₂	-10.743	2.971				3.161
$GA(NH_2)_2 + CO_2$	-4.594	3.010				3.484
GACOOH+CO ₂	-12.667	2.828				3.725
GA(COOH) ₂ +CO ₂	-20.028	3.153				3.784

Conclusions

- CO₂ adsorption over various functionalized graphane was studied using DFT.
- CO₂ adsorbs weakly on a P-functionalized graphane. The adsorption can be strengthened with the presence of co-adsorbed H_2O (about 42 kJ/mol with PH₂-grafted on graphane).
- Under dry conditions, CO₂ adsorption can be greatly enhanced with the presence of two –OH groups grafted on graphane (about -45 kJ/mol).
- This work provides an atomic-level strategy in the design of functionalized graphane for carbon dioxide capture and storage.

Thank you for your attention

Material Studio

- Materials Studio is a software for simulating and modeling materials.
- It is developed and distributed by Accelrys.
- Materials Studio is a complete modeling and simulation environment designed to allow researchers in materials science and chemistry to predict and understand the relationships of a material's atomic and molecular structure with its properties and behavior.

Density Functional Theory (DFT)

- **Density functional theory (DFT)** is a computational quantum mechanical modeling method.
- To study the electronic structure of many-body systems.
- The most popular simulation approach in condensed-matter physics, computational chemistry and materials science.
- Its basic theory is using functionals of spatially dependent electron density to determine the properties of a many-electron systems.

Doped & Grafted

P-doped graphane

CO₂ Adsorption over -NH₂, -OH and -COOH Grafted Graphanes

- The CO₂ adsorption energy can be tuned in a substantial range with varied types and locations of functionalities on graphane.^[22]
- Generally, for the types of functionalities on adsorbent surfaces govern the adsorption thermodynamics on CO₂ capture,^[26] four functional groups (hydrogen H-, hydroxyl OH-, amine NH₂- and carboxyl COOH-) are usually considered to improve the gas adsorption capacity and selectivity performance.^[27]
- It should be mentioned that the CO₂ adsorption efficiency or capacity depends on not only the interaction strength between CO₂ and adsorbents but also the availability of adsorption sites, which could be affected by textural properties of adsorbents.

• minimize the interaction between the periodic images of the mentioned sheets.

Electron Density and Density of States

• Electron density is the measure of the probability of an electron being present at a specific location.

• The density of states (DOS) of a system describes the number of states per interval of energy at each energy level that are available to be occupied.

Reference

- [1] R. A. Feely, S. C. Doney and S. R. Cooley, "Ocean Acidification: Present Conditions and Future Changes in a High-CO₂ World," Oceanography, 2009, 22, pp. 36-47.
- [2] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z.R. Herm, T.-H. Bae and J. R. Long, "Carbon Dioxide Capture in Metal–Organic Frameworks," Chem. Rev., 2012, 112, pp. 724-781.
- [3] C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman and H. W. Pennline, "Separation and Capture of CO₂ from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers," Journal of the Air & Waste Management Association, 2003, 6, pp. 645-715.
- [4] Y. Zou, V. Mata and A. E. Rodrigues, "Adsorption of carbon dioxide at high temperature—a review," Separation and Purification Technology, 2002, 2, pp. 195-205.
- [5] J. J. Zhao, A. Buldum, J. Han and J. P. Lu, "Gas molecule adsorption in carbon nanotubes and nanotube bundles," Nonotechnology, 2002, 13, pp. 195.
- [6] D. Mantzalis, N. Asproulis and D. Drikakis, "Filtering carbon dioxide through carbon nanotubes," Chem. Phys. Lett., 2011, 506, pp. 81-85.
- [7] W. J. Wang, X. Peng and D. P. Cao, "Capture of Trace Sulfur Gases from Binary Mixtures by Single-Walled Carbon Nanotube Arrays: A Molecular Simulation Study," Environ. Sci. Technol., 2011, 45, pp. 4832-4838.
- [8] J. J. Zhao, A. Buldum, J. Han and J. P. Lu, "Quantum transport properties of ultrathin silver nanowires," Nanotechnology, 2002, 13, pp. 195-200.
- [9] E. Di Biase and L. Sarkisov, "Systematic development of predictive molecular models of high surface area activated carbons for adsorption applications," Carbon, 2013, 64, pp. 262-280.
- [10] D. C. Wu, F. Xu, B. Sun, R. W. Fu, H. K. He and K. Matyjaszewski, "Design and Preparation of Porous Polymers," Chem. Rev., 2012, 112, pp. 3959-4015.
- [11] H. S. Choi and M. P. Suh, "Highly Selective CO₂ Capture in Flexible 3D Coordination Polymer Networks," Angew. Chem. Int. Ed., 2009, 48, pp. 6865-6869.
- [12] X. Feng, X. S. Ding and D. L. Jiang, "Covalent organic frameworks," Chem. Soc. Rev., 2012, 41, pp. 6010-6022.
- [13] R. Babarao and J. W. Jiang, "Exceptionally high CO₂ storage in covalent-organic frameworks: Atomistic simulation study," Energy Environ. Sci., 2008, 1, pp. 139-143.
- [14] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z.R. Herm, T.-H. Bae and J. R. Long, "Carbon dioxide capture in metal–organic frameworks," Chem. Rev., 2012, 112, pp. 724-781.
- [15] F. Chang, J. Zhou, P. Chen, Y. L. Chen, H. H. Jia, S. M. I. Saad, Y. Gao, X. Cao and T. Zheng, "Cyclic CO₂ capture of carbide slag modified by pyroligneous acid in calcium looping cycles," Asia-Pac. J. Chem. Eng., 2013, 8, pp. 618-626.
- [16] M. X. Shan, Q. Z. Xue, N. N. Jing, C. C. Ling, T. Zhang, Z. F. Yan and J. T. Zheng, "Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes," Nanoscale, 2012, 4, pp. 5477-5482.
- [17] D. Smykowski, B. Szyja and J. Szczygieł, "GCMC simulations of CO₂ adsorption on zeolite-supported Ir 4 clusters," J. Mol. Graph. Model, 2014, 50, pp. 35-43.
- [18] M. Palomino, A. Corma, F. Rey and S. Valencia, "New Insights on CO₂- Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs," Langmuir, 2010, 26, pp. 1910-1917.
- [19] A. Savchienko, "Transforming Graphene," Science, 2009, 323, pp. 589–590.
- [20] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, "Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane," Science, 2009, 323, pp. 610-613.
- [21] J. O. Sofo, A. S. Chaudhari and G. D. Barber, "Graphane: a two-dimensional hydrocarbon," Phys. Rev. B., 2007, 75, pp. 1534011-1534014.
- [22] J. Xiao, S. Sitamraju and M. J. Janik, "CO₂ Adsorption Thermodynamics over N-Substituted/Grafted Graphanes: A DFT Study," Langmuir, 2014, 30, pp. 1837-1844.

Reference

- [23] J. O. Sofo, A. M. Suarez, G. Usaj, P. S. Cornaglia, A. D. Hernandez-Nieves and C. A. Balseiro, "Electrical control of the chemical bonding of fluorine on graphene," Phys. Rev. B., 2011, 83, pp. 81411-81414.
- [24] J. Dai, J. Yuan and P. Giannozzi, "Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study," Appl. Phys. Lett., 2009, 95, pp. 232105.
- [25] G. Savini, "Doped graphane: a prototype high-T_c electron-phonon superconductor," Phys. Rev. Lett., 2010, 105, pp. 1002.
- [26] Y. Y. Liu and J. Wilcox, "Effects of Surface Heterogeneity on the Adsorption of CO₂ in Microporous Carbons," Environ. Sci. Technol. 2012, 46, pp. 1940-1947.
- [27] X. Q. Lu, D. L. Jin, S. X. Wei, M. M. Zhang, Q. Zhu, X. F. Shi, Z. G. Deng, W. Y. Guo and W. Z. Shen, "Competitive adsorption of a binary CO₂-CH₄ mixture in nanoporous carbons: effects of edge-functionalization," Nanoscale, 2015, 7, pp. 1002-1012.
- [28] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Phys. Rev. 1964, 136, pp. 864-871.

٠

- [29] W. Kohn and L.J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 1965, 140, pp. 1133-113.
- [30] L. Hedin and B.I. Lundqvist, "Explicit local exchange correlation potentials," Phys. 1971, 4, pp. 2064-2083.
- [31] J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 1996, 77, pp. 3865.
- [32] H. J. Monkhorst and J. D. Pack, "On Special Points for Brillouin Zone Integrations," Phys. Rev. B., 1976, 13, pp. 5188-5192.
- [33] W. A. Henderson and C. A. Streuli, "The Basicity of Phosphines," J. Am. Chem. Soc., 1960, 82 (22), pp. 5791-5794.
- [34] M. A. Carroll and A. B. Holmes, "Palladium-catalysed carbon–carbon bond formation in supercritical carbon dioxide," Chem. Commun., 1998, pp. 1395-1396.
- [35] W. L. Wang, X. X. Wang, C. S. Song, X. L. Wei, J. Ding and J. Xiao, "Sulfuric Acid Modified Bentonite as the Support of Tetraethylenepentamine for CO₂ Capture," Energy Fuels 2013, 27, pp. 1538-46.