
Crossing the Bosphorus: Bridges, Tunnels and a lot of concrete Building a Sustainable Infrastructure for a Modern Silkroad

BOSPHORUS CONNECTING CIVILIZATIONS

Mandrocles of Samos

500 BC

1860

AVANT-PROJET D'UN PONT-TUNNEL IMMERGE BREVETE PAR LE GOUVERNEMENT IMPERIAL OTTOMAN

Frofit en long et installation générale du raccordement

64 (B. 64)

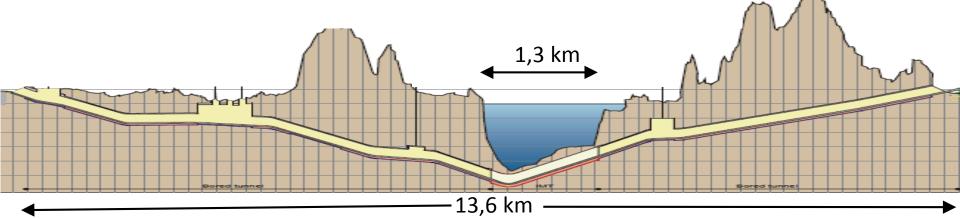
Tom Tom Traffic Index									
World rank	City	Congestion							
1 0	Istanbul	58%							
2	Mexico City	55%							
3	Rio de Janeiro	51%							
4	Moscow	50%							
5 📀	Salvador	46%							
6	Recife	45%							
7	Saint Petersburg	44%							
8	Bucharest	41%							
9	Warsaw	40%							

Castrol Magnatec Stop-start Index

	top start mack	
1	Istanbul	31200
2	Mexico City	30480
3	Moscow	29520
4	Beijing	28200
5	Jakarta	28080
6	Rome	28080
7	Saint Petersburg	28080
8	Bangkok	26040
9	Shanghai	24960
10	Surabaya	24360

transit ships, dangerous goods

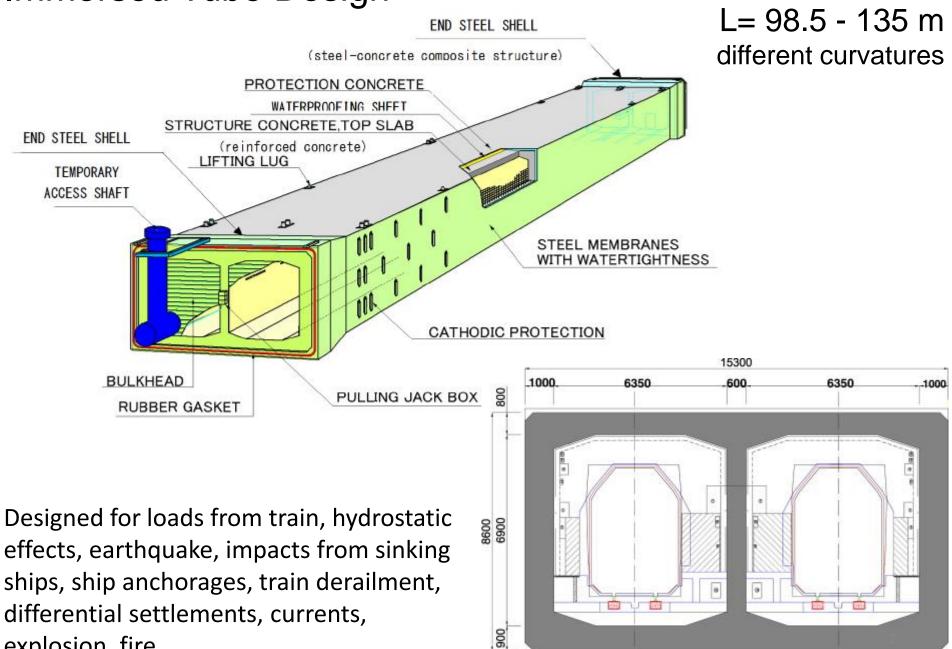
INVESTMENT PLANS for the NEW INFRASTRUCTURE


Izmit Bay Bridge 4th longest span

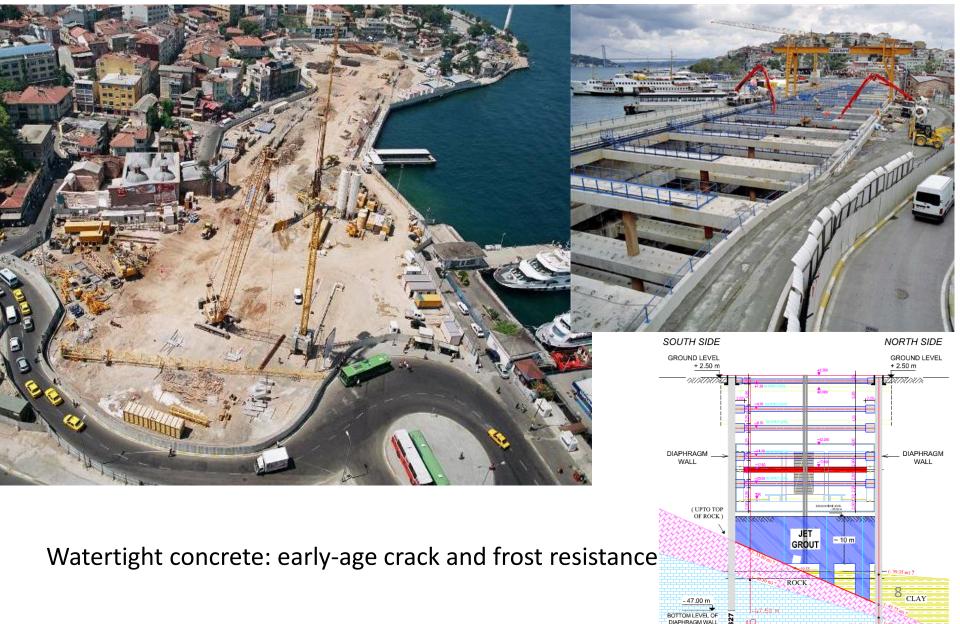
2013-

- Deepest IMT depth: 58 m, EPC, Design and Build Project Started in 2004 \$3.3 billion 1,3 million m³ concrete
- 150.000 psngrs/hr
- Total length: 76 km Surface flow: 3 m/s Reverse lower sea flow: 3 m/s

Challenges for sustainability: Nature, history and society



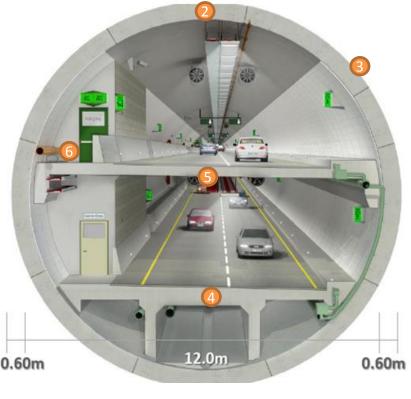
Immersed Tube Design



11 unique tubes

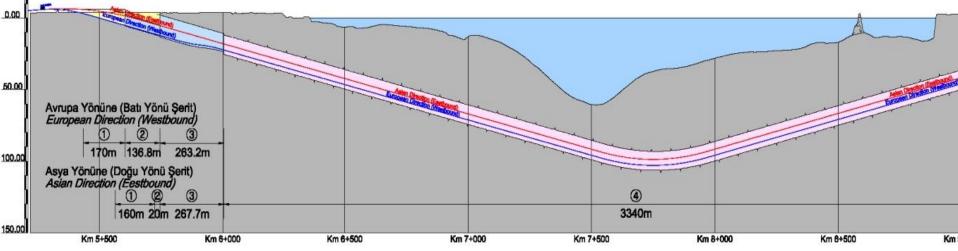
explosion, fire...

Uskudar Station Construction in buoyancy


41 500 pssngrs/hr L: 278m, W:32m, D: 30m

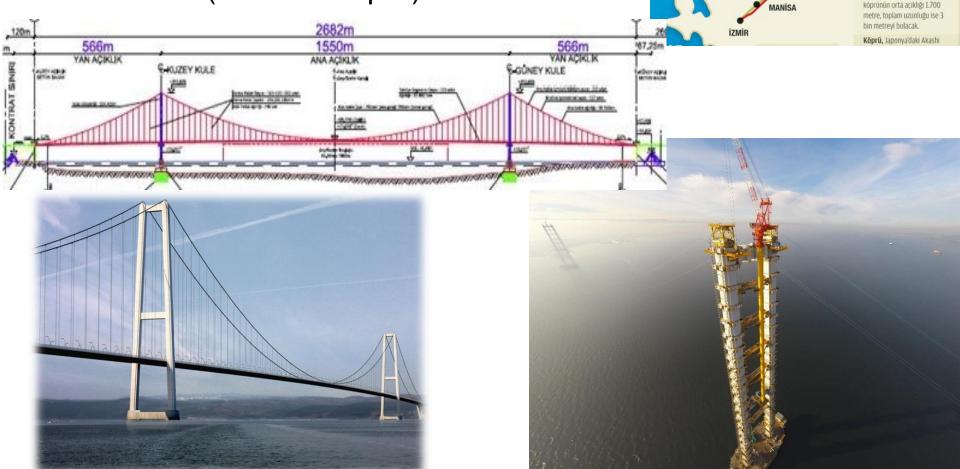
EURASIA TUNNEL Bentonite composite slurry TBM,

World's 2. with 11 bars operating pressure & 6. with 13.7 m excavation D. Started in 2013, BOT, 30.5 y Contract Period 90.000 Annual av. daily traffic, \$1.2 Billion


Tunnel Plan & Profile

- 1. TBM Excavation
- 2. Segment Lining
- 3. Backfill Grouting
- 4. Bottom Deck Construction
- 5. Upper Deck Construction
- 6. Emergency Exit Structure

Tunnel Depth 106m


Lining 60cm precast concrete

Upper Deck Cast insitu concrete

IZMIT BAY BRIDGE

World's 4. longest suspension bridge, started in 2013 \$3,8 Billion, BOT, 22 years Width: 35m, Steel towers h: 234m 175 000 m³ concrete for anchorages and caissons (at 40 m depth)

Total 421 km.

ISTANBU

MARMARA

Karacaber

Akhisa

Susurluk

BALIKESIR

İzmit Körfezi gecişi

Orhangazi

Toplam 420 kilometreyi bulan yol 5 yılda tamamlanacak

Otovol, kamulastirmalarla

birlikte 11 milyar TL'ye mâl

Projede 30 viyadůk, 209 köprů

4 tünel, 18 gise alanı yer alacak

izmit Körfezi'ne yapılacak

BURSA

olacak

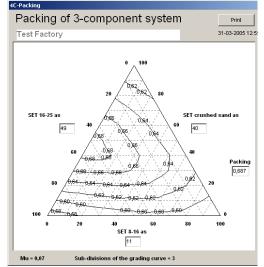
izmit Karamürse

Designing with Concrete

Some limits are **prescribed** to ensure the quality, some degree of freedom in the mixture design for **performance**.

Min. 100 Years of service life:

- Quality management: designer + experts + construction team Identification of durability parameters
- Pretesting: Accelerated & long term (more reliable) material tests Declaration of limit values
- FSTC and simulation: Workmanship, methods, curing, early C_R **Planning** of casting, curing and monitoring
- Production: Traceability and quality control tests Inspection sections of materials and in-situ quality

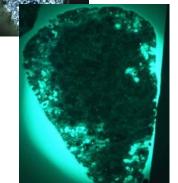

Early age properties: cracking risk, temperature monitoring **Long term** durability: permeability, microstructure on cores

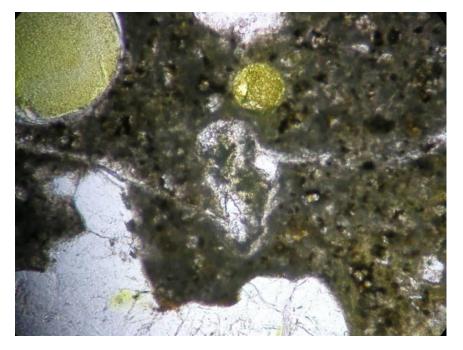
Act	ERQ No	Activity Description	Testin	ıg Per	iod																							
ID			Mat.	Test.	Total	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11 1	2	1 2	2 3	3 4	1 5	6	7	8
			day	day	day																							
_		Preliminary Works														·				_ '	•				'			. '
0010		Planning all concrete works				-										le	st	n	Лŀ	Plai	1 .	M	ar	m	ar	ลง		ahl
0020		Initial procurement, Subcontractors																-										
0030		Constituent materials, investigation														lat	~ ~	h	.1	Ta	.	<u> </u>			เคเ		\ ro	:4.
0035		Preliminary testing														เรเ	al	DU	Л	Tec	711	I IIC	<i>i</i> d	IU	7111	ve	ЯS	π
0040		Lab preparations																										,
	4.2.3.	Constituent Materials																										
0045		Sampling																										
0050		Pretesting																_										
0060		Reporting-Constituents																		-								
0061		ER review						_													-							
		Aggregates Alkali Reaction				<u> </u>																						
	4.2.3.7/8	Petrographic Analysis												_		-												
		Short Test ASTM C1260	0	15	15																							
	4.2.3.7	FA-Mortar Bar Test+Reporting	0	140	140												_	-	_									
0070	4.2.3.8	CA-CAN Test-Phase A+Reporting	0	91	91												_											
0080	4.2.3.8	CA-CAN Test-Phase B+Reporting	91	91	182													-			+	-						
0090	4.2.3.8	CA-CAN Test-Phase C+Reporting	182	91	273																				-			
0100	4.2.3.8	CA-CAN Test-Phase D+Reporting	273	91	364																			_	-	-	┥╺┥	
	4.2.4.2	Concrete Mix Design																										
0110		Laboratory Pre-Testing														-												
0140		Concrete Mix Design																										
0150		Production testing- 1 m3 Trial Pours																-										
	4.2.4.4	Fresh Concrete Tests																-										
	4.2.4.5	Hardening Concrete Tests																										
0120		Pre-Testing															-	_										
0130		Reporting-Mix and Hardening Conc																		-								
0131		ER review																		_								
		Comp.Str.test (cured at Max Temp.)																			-	_		-				
		ASTM C 1202 (cured at Max Temp.)																						-				
_	4.2.4.5	Hardened Concrete Tests																										
0137		Pre-Testing (comp, density, air)																										
0138		Petrographic Testing																										
0136		Chloride Diffusion																										
		Chloride Diffusion on 1 m3	180	5	185														+		+	-+		-				
		Chloride Diffusion on 1 m3	180	40	220														+		+	-+						
		Chloride Diffusion on FSTC	35	5	40															_			-					
0160	L	Reporting-Mix and Hardened Conc																			_							
	3.8.2	Simulation and Controls																										
0170		Simulation Report																		-								
0180		Review and Comment																		_								
		Full Scale Trial Casting (FSTC)																										
0190		Full program																		-								
0181	4.2.5/6	Pre-Tests for operations																		-								
0200		ER review of full program																		-		_						
0210		CIQP for curing and simulation																		-								
0220		ER review of CIQP for curing																		-								
0230		Full scale trial casting																			+				1			
0240		Reporting on FSTC																										
0250		Additional FSTC incl. curing																			· ·	+						
0260		Reporting on additional FSTC																				-	-					
		Pre-Testing Completion																								13		
0290		Adjustments and Conclusion																					-					
		Full Pre-Testing Report																					-					

Materials

Special CEM I 42.5 N, CEM IIIB 42,5 $C_3A < 2\%$ $C_3S < 45\%$ Fly ash, micro silica

Special production/storage of Aggregates Coarse limestone 4-16 & 16-22 mm limestone & natural sand 0-4 & 0-2


Special Chemical Admixtures for compatibility with Cement, fine sand: robustness, pumpability and slump life PC and AEA


Alkali Aggregate Reactions

Design of Concrete Mixtures Marmaray Project

C40/50 strength class, w/c= 0.38 Max Cl = 0.1% of total powder Max. eq. Na₂O = 3.0 kg/m^3

Slump = 210 ± 30 mm Entrained air = $4.5 \pm 2\%$

Mix 1: low hydration heat Mix 2: high early strength

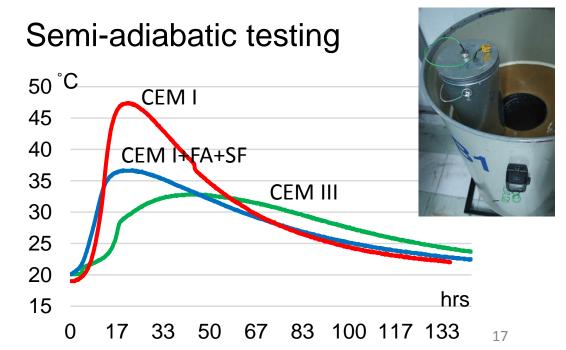
	Mix 1 Kg	Mix 2 Kg
CEM I 42,5 N	-	275
CEM III B	375	-
Fly Ash	-	50
Micro Silica	-	30
Water	143	129
0-2 mm	462	640
0-4 mm	366	280
4-16 mm	445	473
16-22 mm	557	475

SCC mix for IMT end shells Highly flowable mix for IMT joints High early strength mix for TBM segments

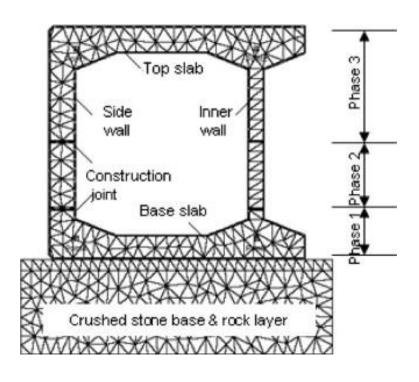
Hardening Concrete

0.5, 1, 2, 3, 7, 14, 28. days Compression, Split tension, E modulus

Thermal exp. coeff.

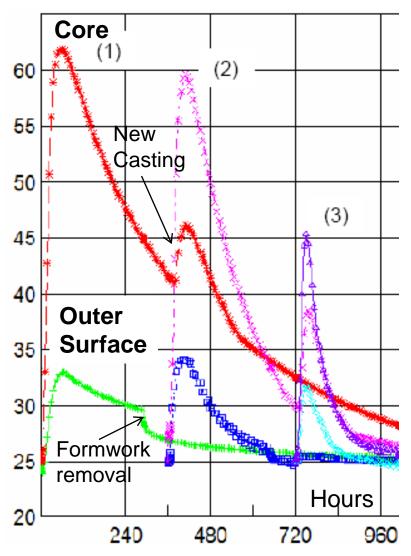

Shrinkage

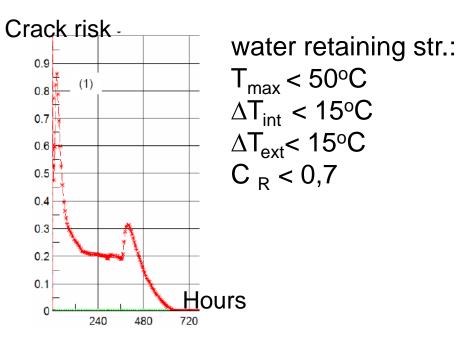
Creep



Activation energy

Simulation for Early Age Crack Risk


Early Age Concrete Properties


- E modulus, tensile strength development
- Thermal expansion coefficient
- Poisson's ratio
- Shrinkage and creep
- Adiabatic heat development
- Specific heat capacity, heat conductivity

Contractor's Variables

- Ground spec. heat capacity, heat conduct.
- Structural boundary conditions
- Environmental temp., humidity
- Casting days and sequence
- Removal day of formwork/ insulation
- Formwork/Insulation thickness, heat conduct.
- Fresh concrete temp.
- Cooling/heating

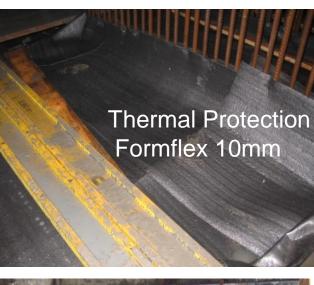
```
Temperature (°C)
```


Prediction of maturity and strength development for site planning of:

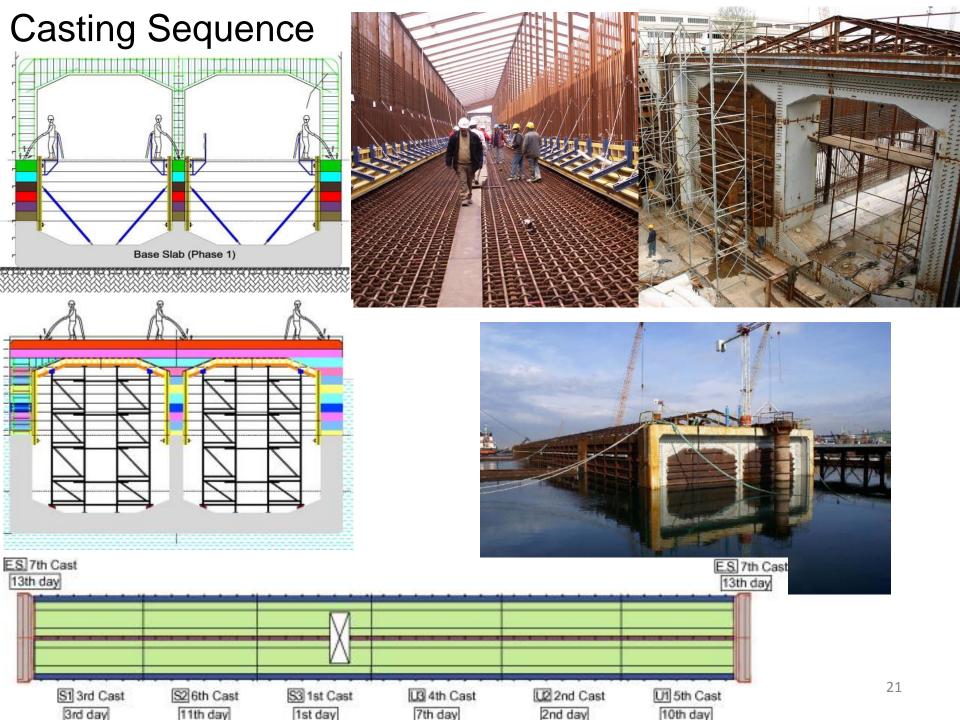
Casting sequence

Use of cooling/insulation

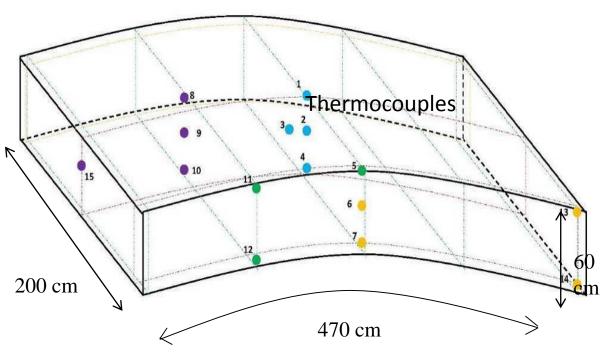
Type/duration of curing


Stripping time of the formwork

Post cooling and curing operations



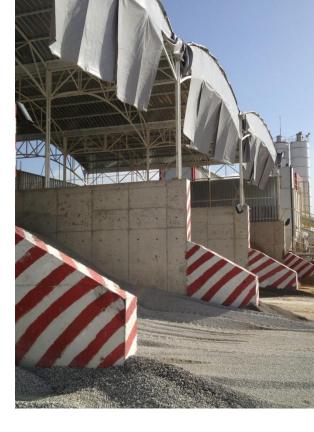
°C		T _{fresh}	T _{max}	D _{int}	C _R
Criteria			≤ 65	≤ 15	≤ 0.7
Simulation S	ummer	30	54	4.5	0.66
	Max	30	51	14	
Monitoring	Min	18	41	3	
	Avg	25	45	10	



Transfer time

Scenario	Curing	Formwork removal (hrs)	PE cover application (hrs)	Transfer to stock (hrs)	Simulation TMax/time (°C)/(hrs)	Measured TMax/time (°C)/(hrs)	Cracking Risk Factor
А	4 hrs/35°C	20	44	120	57/29	55/21	0,60
В	Ambient	20	44	120	55/29	51/21	0,50
С	Ambient	20	44	72	55/29	-	0,50
D	Ambient	15	44	72	55/29	-	0,50
Е	Ambient	20	44	48	55/29	-	0,93
F	Ambient	15	44	48	55/29	-	0,93

Transfer time to stock area is critical due to the ΔT between $T_{environment}$ and $T_{segment}$ => continue curing at the stock area


Production Issues

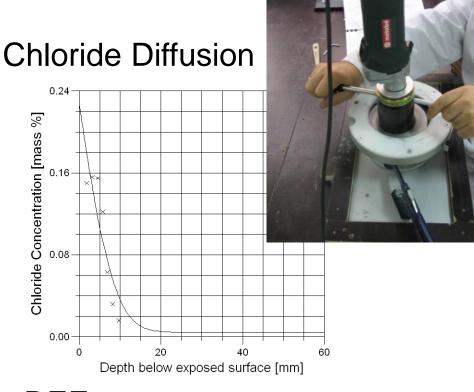
Low T_{concrete}: Shades and sprinklers on the stock Buried cooled/chilled water tanks

T_{Cement}

- Fresh concrete consistency:
- Temperatures:10-32 °C
- Moisture: up to 16% in washed natural fine sand
- Fineness: up to 12% in crushed sand
- Batching plant & pumping distances
- After pump slump: controlled by initial slump, admixture content, mixing time

 T_{conc} - admixture content relation & lifetime: determine at all expected T Mixer type effects the correlation between lab and plant, site testing is important

Permeability and Durability Testing at the lab

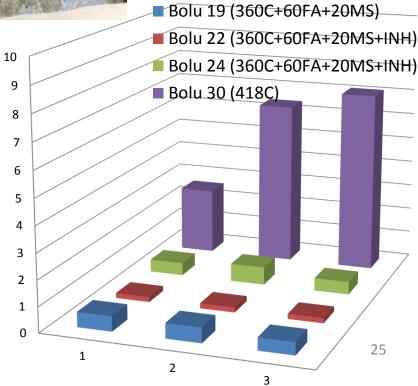

Rapid Chloride Permeability

For on site QC besides strength

Salt Scaling Freeze-thaw

Diffusion Coefficient...from lab to site

Heat development


Compaction

Corrosion current (uA/cm2)

Corrosion inhibitors

YSS BRIDGE N. Marmara Motorway Started in 2013, BOT, 10 yrs 36 viaducts, 4 tunnels, 117 bridges \$1,7 Billion, 2 million m³ concrete

USKUMRUKÖY

....

0-1

CEVRENCE

MALIC KON

ATATÜRK HAVALİMANI

3.HAVALİMANI

IŞIKLAR

BAŞAKŞEHİR

03

E57-KL

AVCILA

ODAYERI

FENERTEPE

MAHMUTBEY

GARIPCE

POYRAZKÖY

Designed for, 2 trains meeting + traffic jam Earthquake and wind (250 km/h)

CAMLIK

RÍVA

HÜSEYİNLİ

SULTANBEYLİ

SABIHA

GÖKCEN

all way

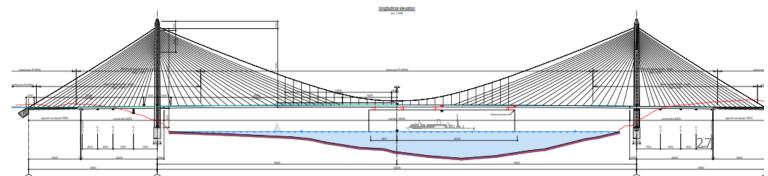
RESADIYE

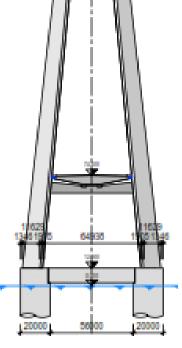
TEM

PASAKÖY

PS 123+188.794

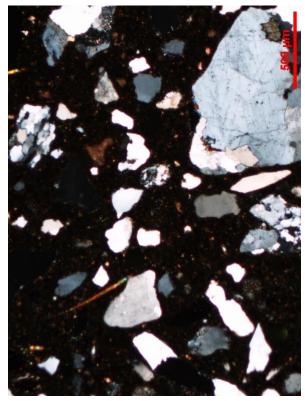
Hybrid system (suspension and cable-stayed)


Design: M. Virlogeux, T-Engineering, Sub-contr: Hyundai-SK

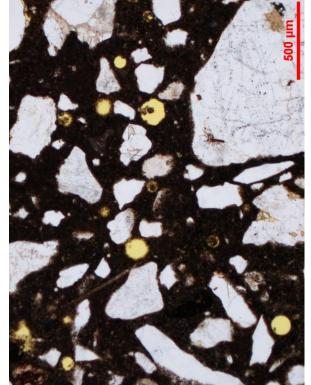

321m RC tower H, 59m deck W, 5,5m deck H and 2,164 m L, 1,408m main span

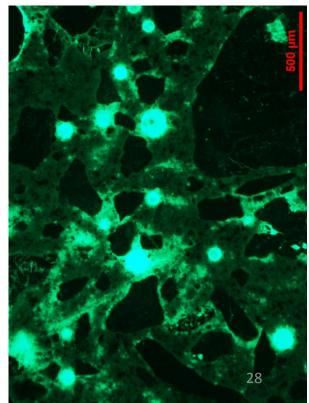
The widest, the longest with a railway system, the highest towers and 8th longest suspension bridge

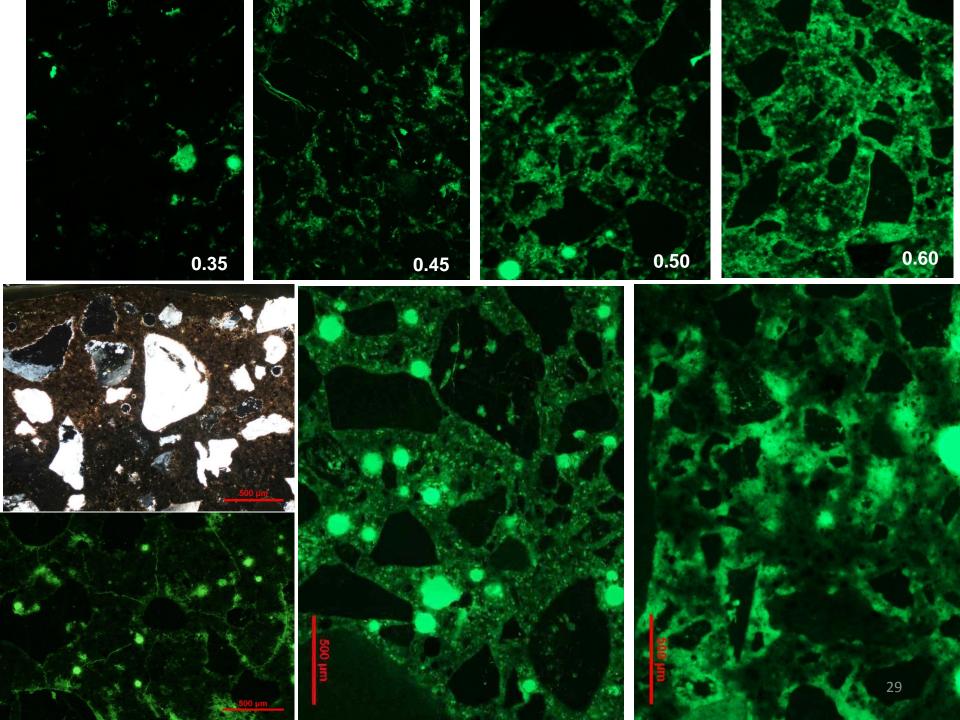
228 000 m³ concrete

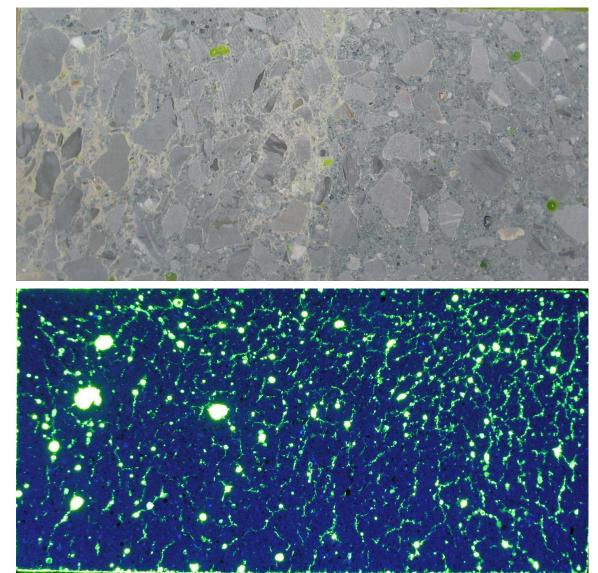


Insitu Quality Pretesting, FSTC, Production: 6 cores/5000 m³


- 2,5x4 cm², Mineralogy
- Cementitious materials

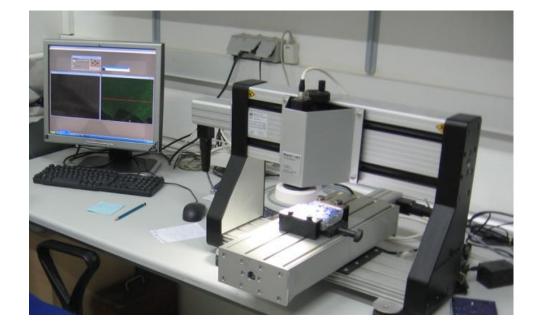

Fluoresence intensity:

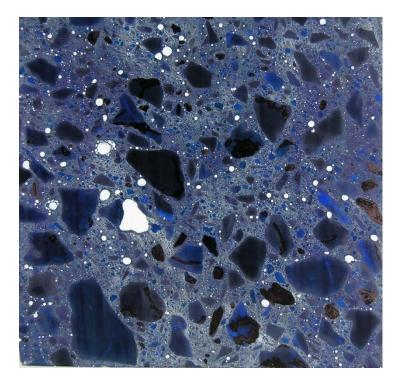

- Capillary porosity (w/c)
- Paste homogeneity
- Cracks interfaces

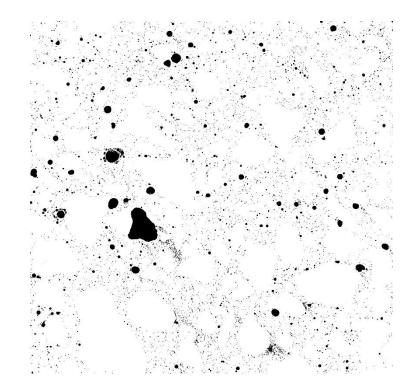


Plane Section Analysis 10x20 cm²

Aggregate shape, type, content, distribution Mortar homogeneity, segregation Workmanship, entrapped air voids, bleeding Crack connectivity, direction, length, width, location

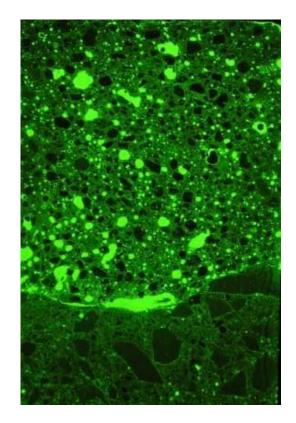


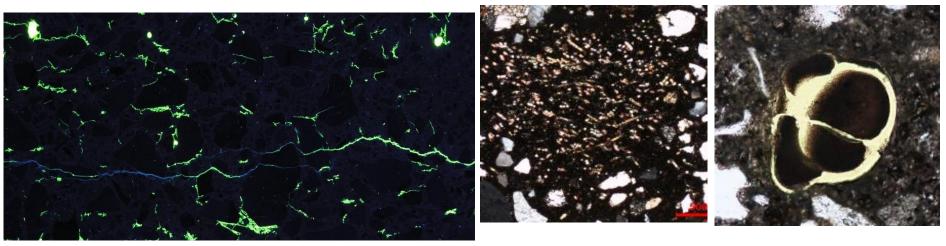

Normal light


UV light

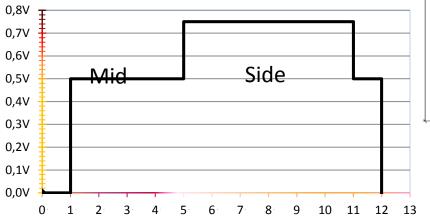
Air Void Analysis

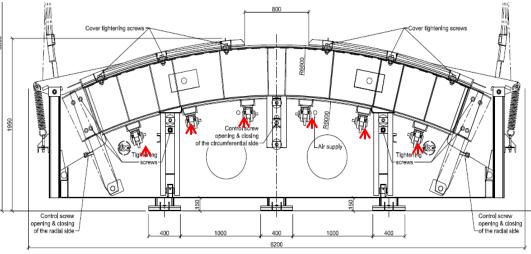
- Air Content
- Specific Surface
- Spacing Factor

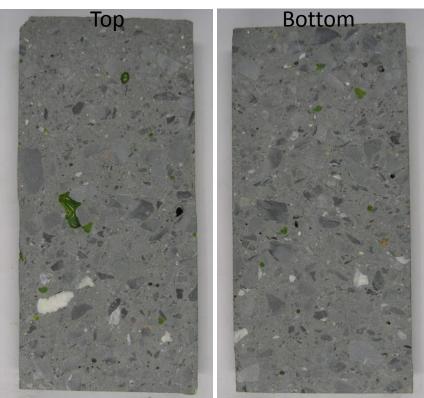




Quality of Repair Works



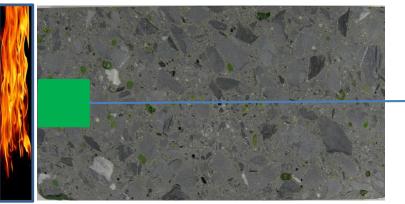


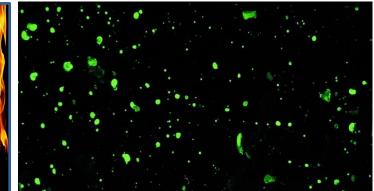

Workmanship, materials and limits defined by trials

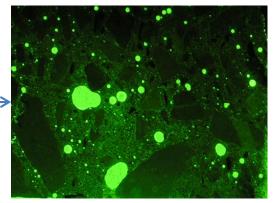
Formwork vibrators

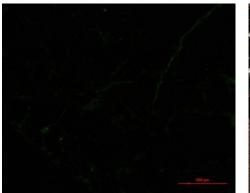
RD-3 VIBRATION SCHEME

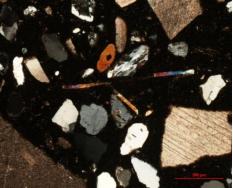
T _{concrete}	Slump	S. Flow	Flow	Vib	ration
°C	cm	cm	cm	min	Scheme
18	22	41	54	11	I
15	19	36	42	11	II
15	20	33	47	8,5	
12	21	39	51	8	
13	22	35	49	7	
12	19	30	43	7,5	I

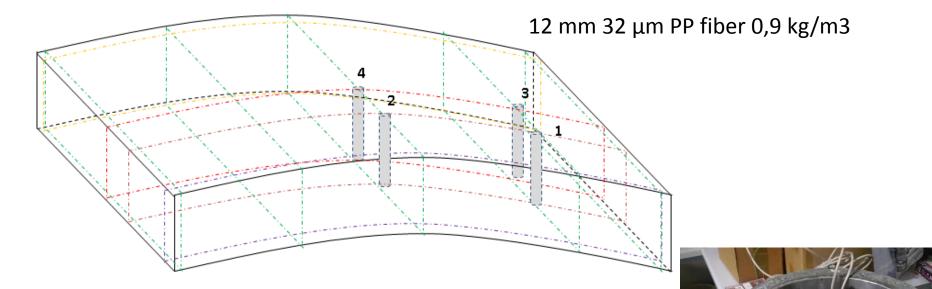

vibration scheme depends on flow


PP FRC Fire Testing



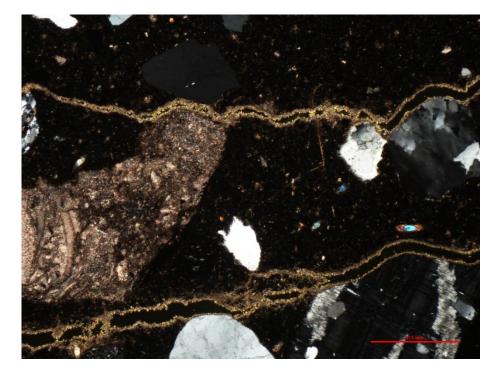

6mm, 64 microns 1,75kg/m3 fibers => workability

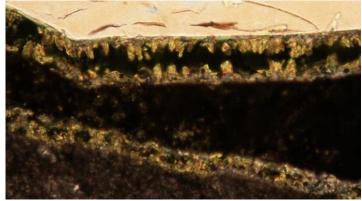




PP FRC to Minimize Cracks in Segments

PP clumps => cracking earlier with smaller width


Quality of Crack Repairs with self-healing materials



Pre-concreting: Go/ No Go decisions

- Database and inspection checklists
- Material IS Certificates
- Temp & stress analysis for casting section
- Weather forecast
- Variation in adiabatic heat development of concrete
- Maintenance and calibration records
- Organization chart, site layout plan
- Ongoing tests (petrography, CI diffusion, ASR..)
- Account for details, risks, coordination under possible scenarios

Post-Concreting: Logging and monitoring

Curing start/stop time, type (moisture and heat) $T_{Concrete}$, maturity calculations for stripping of forms Visual inspection for location, type and patterns of surface defects, cracks Concrete cover inspection

Repair methods/operators.

Concrete for Sustainable Infrastructure Projects

Design for Durability: Principles & specifications prepared/evaluated by **multidisciplinary** expertise Comprehensive **test plan** (up to 1 year) and lab facility

Mat'ls & Mix Design: Methods and **correlations** for ASR, F-T, D_e **Additional** material resources, mixture designs, RMCs **Inspection sections** & storage (C fineness & aggregate temp., moisture..) **Binder composition** for C_R, durability, curing

Simulation & FSTC: C_R & durability testing, mix adjustments for **casting & curing plan** Workmanship, Team organization, **Quality plans** for production & repair works **Interpretation** and site adaptation requires knowledge and experience

Concrete works: Mixture design **adjustments** for T, transportation & pumping dist, slip forming.. **Monitoring** depends on site lab quality Design vs insitu properties: Higher strengths, up to 90 MPa Insitu quality with **petrography** Insitu cover thickness: 20-120 mm

Unique project challenges: Concrete **technology** & **dedicated people** for problem solving.

New standarts with a **holistic approach** (testing, modeling and monitoring) are needed: